Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Here, we discuss a model for the quasi-static magnetoelectric (ME) interaction in three-layer composites consisting of a single piezoelectric (PE) layer and two magnetostrictive (MS) layers with positive and negative magnetostriction. Two types of layer arrangements are considered: Type 1: a sandwich structure with the PE layer between the two MS layers and Type 2: the two MS layers form the adjacent layers. Expressions for the ME response are obtained using the system of equations of elasto- and electrostatics for the PE and MS phases. The contributions from longitudinal and bending vibrations to the net ME response are considered. The theory is applied for trilayers consisting of lead zirconate titanate (PZT), nickel for negative magnetostriction, and Metglas for positive magnetostriction. Estimates of the dependence of the strength of the ME response on the thickness of the three layers are provided. It is shown that the asymmetric three-layer structures of both types lead to an increase in the strength of ME interactions by almost an order of magnitude compared to a two-layer piezoelectric-magnetostrictive structure. The model predicts a much stronger ME response in Type 2 structures than in Type 1. The theory discussed here is of importance for designing composites for applications such as magnetic field sensors, gyrators, and energy harvesters.more » « less
-
A model for the low-frequency magnetoelectric (ME) effect that takes into consideration the bending deformation in a ferromagnetic and ferroelectric bilayer is presented. Past models, in general, ignored the influence of bending deformation. Based on the solution of the equations of the elastic theory and electrostatics, expressions for the ME voltage coefficients (MEVCs) and ME sensitivity coefficients (MESCs) in terms of the physical parameters of the materials and the geometric characteristic of the structure were obtained. Contributions from both bending and planar deformations were considered. The theory was applied to composites of PZT and Ni with negative magnetostriction, and Permendur, or Metglas, both with positive magnetostriction. Estimates of MEVCs and MESCs indicate that the contribution from bending deformation is significant but smaller than the contribution from planar deformations, leading to a reduction in the net ME coefficients in all the three bilayer systems.more » « less
An official website of the United States government
